handyG

Release v0.1.5

L. Naterop, A. Signer, Y. Ulrich

Oct 09, 2023

CONTENTS:

1 Getting started
1.1 Obtainingthecode e
1.2 Installation using meson and ninja (recommended)o
1.3 Imstallingusingmake e e
1.4 Usagein Fortran e e e e e e e
1.5 Usagein Mathematica i i i it e e e e e e e
2 Notation
2.1 Multiple polylogarithms e e e e e e e e e
2.2 Convergence Properties v v v it e
2.3 Shuffle algebra and trailing zeros L. L e
3 The algorithm
3.1 Removal of trailing zeroso e e e e e e e e e
3.2 Making GPLsconvergent e
3.3 Evaluation of pending integrals L. L e
34 Increaserate of CONVEIZENCE v v v v vt i it e e e e e e e e e e e e
3.5 Anexamplereduction L L. L e e e e e e e e e
4 Fortran reference guide
4.1 User-facing functions L e e e e
4.2 Internal functions L. e e e
43 Cache syStem i e e e e e e e e e e e e e e e e e e
S Known Issues
5.1 Segmentation fault for arguments on the complex unitcircle
5.2 GPLs with arguments close to one are not precise oo e
5.3 Parallel builds are not supported e
6 Bibliography
Bibliography
Index

AN N AW W W

[eclNeIENERN |

15
15
16
26

27
27
28
28

29

31

33

handyG, Release v0.1.5

Generalised polylogarithms naturally appear in higher-order calculations of quantum field theories. We present handyG
[6], a Fortran 90 library for the evaluation of such functions, by implementing the algorithm proposed by Vollinga and
Weinzierl. This allows fast numerical evaluation of generalised polylogarithms with currently relevant weights, suitable
for Monte Carlo integration.

CONTENTS: 1

handyG, Release v0.1.5

2 CONTENTS:

CHAPTER
ONE

GETTING STARTED

We provide a pre-compiled Mathematica interface for most Linux systems, both for double precision and the quad
precision. Once downloaded, just make the file executable through

for double precision

$ chmod +x handyG-double
for quad precision

$ chmod +x handyG-quad

and load it into Mathematica

(* for double precision *)
Install["handyG-double"]
(* for quad precision *)
Install["handyG-quad"]

1.1 Obtaining the code

The code can be downloaded from this page in compressed form or cloned using the git command

[$ git clone https://gitlab.com/mule-tools/handyG.git

This will download handyG into a subfolder called handyg. Within this folder

[$ git pull

can be used to update handyG.

1.2 Installation using meson and ninja (recommended)

handyG can most easily be build with meson and ninja. You can install these through your system’s package manager
or pip if you have not already

[$ pip install meson ninja

Once you have these tools, you can run

https://gitlab.com/mule-tools/handyG/-/jobs/artifacts/master/raw/handyG-double?job=compile-double
https://gitlab.com/mule-tools/handyG/-/jobs/artifacts/master/raw/handyG-quad?job=compile-quad
https://gitlab.com/mule-tools/handyG/-/jobs/artifacts/master/raw/handyG-quad?job=compile-quad
https://mesonbuild.com/
https://ninja-build.org/

handyG, Release v0.1.5

$ meson setup build # Configures handyG

$ ninja -C build # Compiles the library

$ ninja -C build test # Performs checks (optional)

$ ninja -C build install # Installs library into prefix (optional)

This will compile handyG in the subfolder build (you can choose any name).
During the configuration step (meson setup) you can provide a number of options

¢ install handyG to a non-standard path (recommended)

[$ meson setup build --prefix /path/to/installation/folder }

e perform dynamic linking (produces 1ibhandyg. so rather than 1ibhandyg.a)

[$ meson setup build --default-library shared]

 Use quadruple precision (128 bits) rather than double precision (64 bits)

[$ meson setup build -Dreal=128]

* Compile Mathematica interface (requires mathematica to be installed or mocked)

[$ meson setup build -Dmcc=true]

» Compile GiNaC interface (testing only, requires GiNaC to be installed)

[$ meson setup build -Dginac=true]

Build handyG with debug symbols (testing and debugging only)

[$ meson setup build --buildtype=debug J

You can of course mix and match these options. For further details, see the meson manual

1.3 Installing using make

The code follows the conventional installation scheme

./configure # Look for compilers and make a guess at
necessary flags

make all # Compiles the library

make check # Performs a variety of checks (optional)

make install # Installs library into prefix (optional)

handyG has a Mathematica interface (activate with --with-mcc) and a GiNaC interface (activate with --with-ginac)
that can be activated by supplying the necessary flags to . /configure. The latter is only used for testing purposes and
is not actually required for running. Another important flag is --quad which enables quadruple precision in Fortran.
Note that this will slow down handyaG, so that it should only be used if double-precision is indeed not enough.

The compilation process creates the following results
e libhandyg. a the handyG library
¢ handyg.mod the module files for Fortran 90

4 Chapter 1. Getting started

https://mesonbuild.com/Commands.html#setup

handyG, Release v0.1.5

* geval a binary file for quick-and-dirty evaluation

¢ handyG the Mathematica interface

1.4 Usage in Fortran

handyG is written with Fortran in mind. We provide a module handyg.mod containing the following objects

* prec
the working precision as a Fortran kind. This is read-only, the code needs to be reconfigured for a change
to take effect. Note that this does not necessarily increase the result’s precision without also changing the
next options.

e inum
a datatype to handle *-prescription (see Section 3.4).
* clearcache

handyG caches a certain number of classical polylogarithms (see Section 3.5). This resets the cache
(in a Monte Carlo this should be called at every phase space point).

the main interface for generalised polylogarithms.

The following code calculates five GPLs (see paper for details)

PROGRAM gtest
use handyG
complex(kind=prec) :: res(5), x, weights(4)
call clearcache

x = 0.3 ! the parameter

! flat form with integers

res(l) = G((/ 1, 2, 1 /D))

I very flat form for real numbers using F2003 arrays
res(2) = G([1., 0., 0.5, real(x)])

! this is equivalent to the flat expression

res(2) = GC([1., 0., 0.5], real(x))

I or in condesed form

res(2) = G((/1, 2/), (/ 1., 0.5 /), real(x))

! flat form with complex arguments
weights = [(1.,0.), (0.,0.), (0.5,0.), (/.,1.)]
res(3) = G(weights, x)

! flat form with explicit i®-prescription

res(4) = G([inum(l.,+1),inum(0®,+1),inum(5,+1)], &
inum(1l/x,di®))

res(5) = G([inum(l.,-1),inum(0,+1),inum(5,+1)],&
inum(1/x,di®))

! this is equivalent to

res(5) = G((/1,2/),[inum(l.,-1),inum(5,+1)], &

(continues on next page)

1.4. Usage in Fortran 5

handyG, Release v0.1.5

(continued from previous page)

inum(1l/x,+1))

do i =1,5
write(*,900) i, real(res(i)), aimag(res(i))
enddo
900 FORMAT("'"res(",I1,") = ",F9.6,"+",F9.6,"i")

END PROGRAM gtest

The easiest way to compile code is with pkg-config. Assuming handyG has been installed with make install, the
example program example. £90 can be compiled as (assuming you are using GFortran)

$ gfortran -o example example.f90 \
‘pkg-config --cflags --1libs handyg"

$./example

res(l) = -0.822467+ 0.0000001

res(2) = 0.128388+ 0.000000i
res(3) = -0.003748+ 0.0039801
res(4) = -0.961279+-0.6628881

res(5) = -0.961279+ 0.6628881

If pkg-config is not avaible and/or for non-standard installations it might be necessary to specify the search paths

$ gfortran -o example example.f90 \
> -I/absolute/path/to/handyg -fdefault-real-8 \
> -L/absolute/path/to/handyg -lhandyg

1.5 Usage in Mathematica

We have interfaced our code to Mathematica using Wolfram’s MathLink interface. Below we show how to calculate
the functions above in Mathematica, again, assuming that the code was installed with make install

Install["handyg"];

x=0.3;

res[1] = G[1,2,1]

res[2] = G[1,0,1/2,x]
res[3] = G[1,0,1/2,1+I,x]

res[4] = G[SubPlus[1],5,1/x]
res[5] G[SubMinus[1],5,1/x]

Using SubPlus and SubMinus the side of the branch cut can be specified. In Mathematica, this can be entered using
ctrl _ followed by + or -. When using handyG in Mathematica, keep in mind that it uses Fortran which means that
computations are performed with fixed precision.

6 Chapter 1. Getting started

CHAPTER
TWO

NOTATION

GPLs are complex-valued functions that depend on m complex parameters 2, ..., z,,, as well as an argument y. We
can define a GPL as a nested integral with z,,, # 0

Y t t1 to tm—1 t
G(21, ey Zm ; E/ / / — 2.1
(! " y) 0o t1—21J9 t2a— 22 0 tm — 2Zm

Alternatively, they can also be defined in recursive form as

G(ZQ7 o0y Zm atl))

Y
G(Zh ooy Zm 7y) = /
0

th— 2

where the base case of m = 1 is just a logarithm

G(z;y) =log <1 - y) .
z
To also cover the case of z,, = 0 we define

(logy)™

NI = T 2.2)

where we denote a string of m zeros as O,,.

We call G(z1, ..., zm; y) flat since all parameters are explicit. However, this notation can be cumbersome if many of
the z; are zero. In this case we introduce the condensed notation which uses partial weights m; in order to keep track
of the number of zeros in front of the parameter z;

Gmh...,mk (Zla vy Rk ay) = G(O’ml—lazla "'7Zk—1a0mk—lazk 719) . (23)

Both notations will be used interchangeably. We say that this GPL is of depth k as it has k& non-zero parameters (not
counting y). Its total weight is m = > m,;.

2.1 Multiple polylogarithms

Multiple polylogarithms (MPLs) are a related class of functions that also generalise logarithms. They are defined as an
infinite nested series
T ik
N R L S R 2.4)
; U Uk
11> >

where my, ..., my, are integer weights. If there is only one argument present, they reduce to classical polylogarithms
m(T).

handyG, Release v0.1.5

MPLs are closely related to GPLs through

1 1 1
k .
Mm,y...,Mg (:Ela ceey xk:) = (_1) Gml,...,mk (1_717 1Ty PREED) Ty T) 1) .
This can be inverted by performing an iterated substitution
1 1 Uy 1 Uk—1
Uy = —, U= = —, U = = y
T T1T2 T ZT1...XTk Tl
allowing us to write the GPLs in terms of MPLs
1 w Uk—
1) — k Uy k—1
Gy oo (U oy 5 1) = (=15, (u1 e) . 2.5)

In (2.5), the left-hand side is an integral representation whereas the right-hand side is a series representation.
GPLs with arbitrary parameters satisfy the scaling relation

G(21y s 2m 1Y) = G(K21, ooy KZm 5 KY) (2.6)

for any complex number x # 0. (2.5) assumes the argument of G is equal to one. Using the scaling relation we can
normalise G (21, ..., Zim; y) with K = 1/y to guarantee that the argument is indeed one.

For the numerical evaluation the main idea will be to compute G-functions by reducing them to their corresponding
series representation (2.5).

2.2 Convergence properties
If we want to use an infinite series for numerical evaluation of GPLs, the series needs to be convergent. It can be shown
[7] that an MPL ,,, . i, (21, ..., T)) is convergent if the conditions

|wy - xp] < 1 and (my,21) # (1,1)

are satisfied. Using the relation (2.5), this translates to a sufficient convergence criterion for the integral representation.
We find that if

|y‘ < ‘Zi| Vi = L., k and (mhy/zl) 3& (L 1)) 2.7

Guy....my, (71,5 ---s 21 3 y) 1s convergent.

In Section The algorithm we will review the algorithm developed by [7] to transform any GPL into this form.

2.3 Shuffle algebra and trailing zeros

If the last parameter z;, of a GPL Gy, ... m, (%1, ..., 2 ; y) vanishes, the convergence criterion (2.7) is not fulfilled.
Hence, any algorithm that intents to exploit (2.4) for numerical evaluation needs to remove trailing zeros.

We can exploit the fact that GPLs satisfy two Hopf algebras: a shuffle algebra and a stuffle algebra [3, 5, 7]. Here, we
will only be needing the former. It allows us to write the product of two GPLs with parameters @ and b as

G@@:y)-Gbiy) = > G(E1y). 2.8)

The sum in the right-hand side of (2.8) runs over all elements of the shuffle product of the list @ with b. This shuffle
product gives the set of all permutations of the elements in @ and b that preserve the respective orderings of @ and b.
For practical implementations, a recursive algorithm exists [4].

8 Chapter 2. Notation

CHAPTER
THREE

THE ALGORITHM

The central idea to numerically evaluate GPLs is to first map their parameters to the domain where the corresponding
series representation is convergent (2.7) and to then use the series expansion up to some finite order. Thus, we will first
look at how to remove trailing zeros in Section Removal of trailing zeros, and then how to make a GPL without trailing
zeros convergent in Section Making GPLs convergent as presented in [7]. In Section Increase rate of convergence, we
comment on accelerating the convergence of already convergent GPLs. Finally, in Section An example reduction we
apply the algorithm to an explicit example.

3.1 Removal of trailing zeros

Consider a GPL of weight m with m— j trailing zeros
G(Zlv vy 2y Omfj 5 y) .

We now shufle @ = (21, ..., zj, 0p—;—1) With b = (0). This results in 7 — j times the original GPL as well as terms
with less trailing zeros

G(039) - Gl21, s 2, Om—j 1 3) = (m = J)G(21, 0 23,0 1)
+ > Gls150057, 2, Om—jm1 39). @.1

where the sum runs over all shuffle § = (21, ..., z;_1) (0). We now solve (3.1) for G(z1, ..., zj, 0;m—,; y) and obtain an
expression with fewer trailing zeros. By applying this strategy recursively, we can remove all trailing zeros.

3.2 Making GPLs convergent

3.2.1 Reduction to pending integrals
Consider a GPL of the form

G(A1, ey Qi1 Spy Qi 1y ooy O 3 Y) 3.2)
where s,(= a;) has the smallest absolute value among all the non-zero parameters in G. If |s,| < |y|, (3.2) has no

convergent series expansion. In order to remove the smallest weight s,., we apply the fundamental theorem of calculus
to generate terms where s, is either integrated over or not present anymore

G(A1y eeey Gy 1y Sy Qi1 oeey G 3 Y) = G(A1, ooy @i—1, 0, @11y ooy G 3 Y)

S 9
+/ Spp15——G (A1, ooy i1, Srg 15 Qi 15 ooey U 3 Y) -
0 0sr41

handyG, Release v0.1.5

For the second term we use partial fraction decomposition and integration by parts. Then we obtain different results
depending on where s, is in the parameter list:

* If s, appears first in the list (i.e. ¢ = 1 and s,, = a1) we find

S
Sr4-1
G(Srvai-i-h ey ;y) = G(Oaai-i-h <oy A ;y) +/ ot G(ai-‘rla ey Ay ;y)
0o Sr+17Y
————

G(y ;sr)

Sy Sr

Sr41 Sr41

—|—/ 7G(8r+1,ai+2,u,am ;y)—/ 7G(ai+1w“7am ;y)'
0 Sr+1 = Gi+1 0 Sr+1 = Qi1

(3.3)

pending integral G(az ;sr)

In the first term on the right-hand side, s, is absent. Therefore the resulting GPL is simpler. It might
still be non-convergent, but we can use this method recursively on the resulting GPLs until we end up
with convergent GPLs.

In the second and fourth terms the integration variable s,.;.; does not appear in the parameters of the
GPL, so that the integral can be solved (we write the solution as a GPL instead of a logarithm to be
able to continue recursively).

The third term does have the integration variable s,.;; among the weights and therefore yields what
we refer to as a pending integral. This object can be written as a linear combination of simpler GPLs
as we will see in Section Evaluation of pending integrals.

Note that all GPLs on the right-hand side have depth reduced by one.

o If s, appears in the middle of the list, i.e. 1 < i < m, we find

G(ala ooy Qj—15 Spy Qi 1y +eey Qi 7y) =

+G(CL17 vy Aj—1, 07ai+17 ey Amy 7y)

Sp

Sr+41

—/ ———————G(a1, ..y G2, Sy g1, Qig 1y oy A 3 Y)
0 Sr4+1 — i1

Sy

Sr+1

+/ G(alv"'7ai71;ai+17'~'7a’m 7y)
0 Sr4+1 = GQi—1

(3.4)
G(ai—1 ;)

Sy

Sr+1

+/ G(a17“waifl;87’+17ai+27"'7am 7?/)
0 Sr+1 = Qi+l

S

Sr41

_/ 7G(a17"~7ai—13ai+17~-~7a7n 7y)
0 Sr+1— (it

G(ait1 ;sr)
Again we obtain simpler GPLs (without s,. or lower depth) as well as pending integrals.

* If s, appears last in the list, i.e. © = m, we use the shuffle algebra to remove s, from the last place, just as we
have done to remove trailing zeros.

We repeat these steps also for GPLs that are already under a pending integral.

10 Chapter 3. The algorithm

handyG, Release v0.1.5

3.3 Evaluation of pending integrals

The most general term created by the procedure of the last section is of the form

- Voo sy rts
i) = [[[
(p (v',0),%,9 = (@y) 0o S1—b1Jy s2—Do 0 sp — by (3.5

Gy ooy Gy Sy Qi 1y ooy G 5 Y) -

Here we have adopted the convention that ¢ = 0 implies that the integration variable does not appear inside the GPL.
For example

(ﬁ:(1,2,3),0,(4,5)>:/01 il /0 2 _G(4;5)

81—2 82—3

=029209) = [0 [7 e,

s1— 2 so—3

As we use the algorithm, we need a way to collapse the pending integrals back down again. As an example, consider
the case 7 = 1

. , . Yoos frels,
(p = (y 7b)7lvg = (a’7y)) = e G(SrvaiJrlv"'vam 73/) =
0 0

S1 — bl Sp — b’r

Y s1 Sr—1 Sy
G(0,a;11,y .y O ;
/0 S1 — bl /O Sp — br (i+1 m y)

Yy Sr—1 Sr
S1 Sr Sr41
+/ / / G(ai-t,-l,---aam 5y)
0o S1—b 0 Sp—br Jo Sr41—Y
((ﬁ,y)’O,()>
y Sr—1 Sr
S1 Sy Sr+1
+/ / / G(Sr415Qit2, s Qm 3 Y)
0 S1— by 0 S — by 0 Sr+1 = Gi41
((ﬁ7ai+1),1,(ai+27~~,Ufm§y))
Yy Sr—1 Sr
S1 Sy Sr41
_/ .../ / G(aiJrla"'aa’m ’y)
0 S1—by 0 sr—br Jo Sr41—aip1

((ﬁ7ai+1)707())

= (ﬁ»oa ())G(07ai+17 ey O 5 Y) + ((ﬁ; Y),0, ())G(aiﬂ, ey U 3 Y)

+ (a1 (@is, o am 39)) = ((70141),0,0) Glaisrs s am 59)

The other combinations follow similarly
(15: i7 (57 y)) = +<ﬁ'7 Oa ()) G(ah ey g1, 07 Ajt1y o0y Oy y)

- ((177 ai—l)vi -]-7 (ai+17 ooy Apmy; y))

+

/N

(ﬁ? a‘i—l)70a ()) G(a'17 vy Q15 A1y ooy Ay 7y)

+

/N

(;ﬁ’ a/i+1)a i7 (a’la ey Ai—1,5 Q425 «ooy Qs y))

- ((ﬁa a;t1), 1, ()) G(A1, oy i1, Qg 1y ey O 3 Y) -

3.3. Evaluation of pending integrals 11

handyG, Release v0.1.5

As we recursively apply the algorithm, we increase the number of pending integrals in front but decrease the depth of
the G-functions by one unit in every recursion step. We do this until

1. the only GPLs remaining under pending integrals are of depth one, i.e. G, (s, v),
2. s, is the argument, i.e. G(... ; s,.), or
3. there are no GPLs under pending integrals.

We now discuss all these cases in turn:

1. For GPLs of depth one, i.e. G, (s,+;y), we will be working with explicit logarithms. Hence, we need to indicate
the infinitesimal imaginary part. We have to distinguish two cases: m = 1 and m > 1. For m = 1 we have

Gl(sr:t; y) = G1(y2¢; sr) - G(Oa sr) + log(_y) :
Note that we will most likely have pending integrals in front, thus each term gives again a simpler pending integral
(F= W 0),1,) = GByz 59) = G(B,05y) + log(~y=)G (B.y)

The first and second terms have been reduced to case 2. and the third term to case 3.

For m > 1, we note

Yy Sr
Gm(sr:t 7y) = 7C(m) +A %Gm,—l(t:l: ay) - /0 ;Gm—l(t:t 7y) . (36)

The second and third terms are now longer pending integrals, albeit with reduced weight

(B, (Om—1.9)) = =¢(m) (50, 0))
+ (4,00, m = 1, (0m—2)) (7.0,0))

~ (.0 m =1, (0n-2:9)) -

2. In this case we end up simply with one large GPL

Y Sr—1 .
/ . / 2 G(ass,) = G(5a) ;).
0o S1—0b 0
In terms of pending integrals this is written as
(ﬁ= (4 b),m+ 1,5) =G(b.7:y).

3. If there is no GPL under the pending integral, the integral evaluates to a GPL

y' s1 Sr—1 s
L =G(by,....br).
/0 Sl—bl /0 Sr—br (17 9 y)

In each case we end up with GPLs that are simpler in the sense that s, has been eliminated. These might still be non-
convergent due to other (non-zero) z; elements being smaller in absolute value than y. But applying the removal of s,
recursively we can eliminate all z; for which |z;| < |y|. Therefore in the end we always obtain convergent GPLs.

12 Chapter 3. The algorithm

handyG, Release v0.1.5

3.4 Increase rate of convergence

Even though we have now only convergent GPLs, that does not imply that the convergence is fast enough for numerical
applications. From now on we will only consider y = 1, as we can normalise any convergent GPL using (2.6).
Convergence of such a GPL is slow if some z; is close to the unit circle, i.e.

where) is a parameter to be chosen.

Only for such z; we apply the following strategy: to increase the rate of convergence we can use the fact that GPLs
satisfy the convolution equation [1]

k
G(z1y ey 2k31) = Z(—l)jG(l — Zjy eyl —2151— %)G(zj_‘_l, ey 2K %) ,
=0

J

where p is an arbitrary non-zero complex number. Separating the first and the last term of this sum we obtain for p = 2
and again normalising the GPLs on the right-hand side

G(21, .2 31) = G(221, ., 2253 1) + (-1)FG(2(1 — 21), ..., 2(1 — 21) ;1)

+ Ig(—l)jG(Q(l —2)y .y 2(1 = 21) ; 1>G(2zj+1, o221 1) i

The first term has now better convergence as all parameters are twice as big. The GPL appearing in the sum all have
reduced weight and are therefore not relevant for the present discussion.

The second term may or may not be convergent. If not, we repeat the algorithm outlined in Section Making GPLs
convergent, including if necessary, convolution. At this stage it is not obvious why this recipe does indeed lead to
a final answer and not to an infinite recursion. This can be shown by noting that the algorithm does only replace
parameters with zero or permutes them; it does not introduce new non-trivial parameters. By carefully considering all
possible behaviours under transformation z — 2(1 — z), [7] proved that this method indeed works.

The choice of X is a trade-off between accuracy and speed. A typical choice would be A = 1.1 which is the default in
handyG. A can be changed using the hCircle option in set_options.

3.5 An example reduction

To illustrate the various aspects discussed so far, we include here an example of how the algorithm works in practice.
For this purpose we reduce G(1,0, 3;2) according to this algorithm until we end up with logarithms, polylogarithms
and convergent MPLs. In our notation of a non-convergent GPL we have

1
0
G(\ 1 ER 0 AR 3 R 2 ,) :G(O’Oa372)+/0 SlaislG(SlvoaSvQ)' (37)
Sr a2 as Y

The first term corresponds to G'3(3; 2) and therefore it is a convergent trilogarithm. The second term has s,. appearing
at the first place. Using (3.3) we obtain for the second term

S1

1 1 1
8 S1
| st = [e+ [63

1
—/ 1 3(0,3:2).
o 0

S1 —

(3.8)

3.4. Increase rate of convergence 13

handyG, Release v0.1.5

The first and last terms are both conventional functions. Hence, we only need to worry about the second term which
involves a pending integral. In order to evaluate it, we apply again (3.3) to the GPL under the pending integral to find

. p— . Sl 81 82 .
G(sl,3,2)fG(0,3,2)+/0 82_26’(3 :2) + /O S5 C(2:2)

s (3.9)
2
— G(3;2).
| a6
Substituting this back into (3.8) gives
Lo 1
G(31,3;2)=/ 21G(0,3;2) / / :2)

/0 S1 —0 0 S1 0 82—2 (310)

/o / 2—3 Gls252 /o /6152— (8:2).

Here only the third term is interesting, as the others are (poly)logarithms. The third term is a pending integral over a
GPL of depth one. Thus,

A / Sy — 3 82))
— (G(2;52) — G(0;52) +log(—2)
0 S92 3)

The first two terms have s, as the argument and hence they are GPLs. The last term is independent of s,., making the
integration trivial. Unfortunately, the second term G(0, 3, 0; 1) has a trailing zero. To remove it, we shuffle G(0, 3;1)
with G(0; 1) to find

(3.11)

G(0,3:1)G(0;1)= > G G(0,3,0;1) +2x G(0,0,3;1), (3.12)
¢=(0,3)(0)

which we solve for G(0,3,0;1).
Gathering all terms we obtain with G(0; 1) =log1 =0

G(1,0,3:2) = G(0,0,3;2) + G(2:1) G(0,3 ;2) —G(0; 1)G(0, 3 ; 2)
—_—— ———

——
—3(2/3) log(1/2) —2(2/3)
+G0:1)G(0,3;2) + G(0,2:1)G(3:2) —G(0,3:1) G(3 ;2)
—_—
—2(1/3) log(1/3) —2(2/3) log(1/3)
+G(0,3,2:1) +G(0,3 ;1) log(—2) — G(0;1)G(0,3:1)
—_—— ——
2,1(1/3,3/2) —2(1/3)
+2G(0,0,3;1) = —0.81809 — 1.15049 .
—_——
—3(1/3)

14 Chapter 3. The algorithm

CHAPTER
FOUR

FORTRAN REFERENCE GUIDE

Here we will list the functions of handyG

4.1 User-facing functions

type real (kind=prec) [fixed]

The real number type used in handyG. This cannot be changed at runtime by the user but should be used for all
interactions with the code. It usually refers to double precision

type inum

The data type used for the prescription. This implements abs, real, and aimag.
Type fields
* % c [complex(kind=prec)] :: the complex number
* % 10 [integer(1)] :: the prescription

diO® [type(inum) fixed]
The default sign of the prescription

subroutine GPLopts(mpldel, lidel, hcircle)

a subroutine to set runtime parameters of handyG
Parameters

* MPLdel [real(kind=prec),optional] :: difference between two successive terms at which the
series expansion (2.4) is truncated. Defaults to .

* Lilnf [integer,optional] :: number of terms in the expansion of classical polylogarithms.
Defaults to 1000.

* hcircle [real(kind=prec),optional] :: the size of the circle A (see Section Increase rate of
convergence). Defaults to 1.1

function toinum(x, s)

a function to convert one or more numbers to the inum type.
Parameters
* x [in] :: a scalar or vector of real, complex, or integer numbers

* s [integer(1),optional] :: the sign of the . Defaults to the value of di0 if omitted.

15

handyG, Release v0.1.5

function G(z, y)

the main GPL function in flat notation
Parameters
* z (*) [in] :: alist of the weights z; of (2.1), either real, complex ", or inum.
e y[in] :: aargument y of (2.1), either real, complex ", or inum.

function G(m, z, y)

the main GPL function in condensed notation
Parameters
* m [integer(:),in] :: alist of the partial weights m; of (2.3)
e z (*) [in] :: alist of the weights z; of (2.3), either real, complex ", or inum.
e y [in] :: a argument y of (2.3), either real, complex ", or inum.

subroutine clearcache()

handyG caches a certain number of classical polylogarithms (see Section Cache system). This resets the cache
(in a Monte Carlo this should be called at every phase space point).

4.2 Internal functions

4.2.1 Globals

This contains real (kind=prec), GPLopts() (as set_options)
type integer (kind=ikin) [fixed]
The integer type using in mpl_module for the evaluation of multiple polylogarithms

zero [real(kind=prec),parameter=1e-15]
Values smaller than this are considered to be zero

MPLdelta [real(kind=prec),protected]
If the MPL sum changes less then this, it is truncated

Lidelta [real(kind=prec),protected]
If the polylog sum changes less then this, it is truncated
HoelderCircle [real(kind=prec),protected]
the size of the circle A (see Section Increase rate of convergence)
PolyLogCacheSize [integer(2),parameter=(/5,100/)]
an array of two elements (/ mmax, n /). At most n polylogs with weight mmax will be cached
i_ [complex(kind=prec),parameter=(0,1)]
the imaginary unit
verb [integer]
the verbosity of handyG

16 Chapter 4. Fortran reference guide

handyG, Release v0.1.5

4.2.2 prescription

This contains inum, di®, toinum()

izero [inum,paramter=0]
the number 04 with the default prescription di®

marker [inum,parameter=opaque]

a marker used in find_marker ()

function abs(v)

Parameters
v [type(inum),in] :: a scalar or vector inum value

Return
abs [real(kind=prec)] :: the absolute value of v

function real(v)

Parameters
v [type(inum),in] :: a scalar or vector inum value

Return
real [real(kind=prec)] :: the real part of v

function aimag(v)

Parameters
v [type(inum),in] :: a scalar or vector inum value

Return
aimag [real(kind=prec)] :: the imaginary part of v

4.2.3 Utilities

function get_condensed_m(z)

Parameters
z (*) [type(inum),in] :: the GPL weights

Return
m [integer(size(z))] :: condensed m where the ones not needed are filled with 0

function get_condensed_z(m, z_in)

Parameters
* m (*) [integer,in] :: the m vector
* z_in (¥) [type(inum),in] :: the original flat GPL weights

Return
zZ [type(inum) (size(m))] :: the condesed z vector

function get_flattened_z(m, z_in)
Parameters
* m (*) [integer,in] :: the m vector

e z_in (¥) [type(inum),in] :: the condensed GPL weights

4.2. Internal functions

17

handyG, Release v0.1.5

Return
z [type(inum) (sum(m))] :: the flattened GPL weights

function find_amount_trailing_zeros(z)

Parameters
z (*) [type(inum),in] :: the GPL weights

Return
n [integer] :: the number of trailing zeroes

function find_marker(z)

Parameters
z (*) [type(inum),in] :: alist of GPL weights including a marker

Return
n [integer] :: the location of the marker (indexed at 1)

function find_first_zero(v)

Parameters
v (*) [integer,in] :: a list of integers

Return
n [integer] :: the location of the first zero or -1 if no zero is found

function min_index(r)

Parameters
v (*) [real(kind=prec),in] :: alist of real numbers

Return
n [integer] :: the location of the smallest element

function zeroes(n)

Parameters
n [integer,in] :: the length of the resulting vector, can be zero

Return
z [integer(n)] :: a list of zeroes, potentially empty

function factorial (n)

calculates n! iteratively

Warning: This may return an incorrect result if n is too large to fit into the integer datatype. For
32 bit integers, this means n<=12.

Parameters
n [integer,in]

Return
res [integer] :: the factorial of n

18 Chapter 4. Fortran reference guide

handyG, Release v0.1.5

function binom(n, r)

This implementation of the binomial coefficient is adapted from Rosetta Code which is published under the GNU
Free Documentation License 1.2. It requires approximately (1.55n — 2.5) bit integers. This means that we can
goup ton =~ 83 for 128 bit and n ~ 42 on 64 bit compilers. While this could be restrictive the Bernoulli
numbers this is used for are already O(10?) and O(10°%). It is possible to extend this further by adding more
prime numbers in the implementation

Parameters
* n [integer,in] :: the upper index
* r [integer,in] :: the lower index

Return
binom /integer] :: the binomial coefficient (7

4.2.4 Shuffle algebra

The shuffle algebra is implemented recursively

~ ({az, - Hbi,ba, -} Da
{a17a27’”}{bl’62’”.}7 ({aj7a27}{b22,}@b1>

where @ @ b appends b to the vector d.

function append_to_each_row(a, m)

Parameters
* a [type(inum),in] :: a scalar
o m (*,*) [type(inum),in] :: a list of vectors

Return
res [type(inum)(size(m,1),size(m,2)+1)] :: the list of vectors with a appended to each row

function stack_matrices_vertically(ml, m2)

Parameters
* ml (*,*) [type(inum),in] :: a list of vectors
e m2 (*,*) [type(inum),in] :: a list of vectors

Return
res [type(inum)(size(ml,1)+size(m2,1), size(ml,2))] :: the matrix m1 with the rows of m2 ap-
pended

function shuffle_product(v/, v2)

Parameters
e vl (*) [type(inum),in] :: a list of numbers
e v2 (*) [type(inum),in] :: a list of numbers

Return
res [type(inum)(:, size(vI)+size(v2))] :: alist of lists containing the shuffle product v;vs

4.2. Internal functions 19

https://rosettacode.org/wiki/Evaluate_binomial_coefficients#Fortran

handyG, Release v0.1.5

function shuffle_with_zero(a)

Parameters
a (*) [type(inum),in] :: a list of numbers

Return
res [type(inum)(size(a)+1, size(a)+1)] :: the list a{0}

4.2.5 Mathematical tools

zeta [real(kind=prec),parameter=7etal[2..10]]
The Riemann function for integer values between 2 and 10

DirichletBeta [real(kind=prec),parameter=DirichletBetal2..10]]

The Dirichlet function for integer values between 2 and 10

type el

The data type used for the polylog cache containing the complex argument and the result. The weight is addressed
using the index in cache

Type fields
* % c [complex(kind=prec)] :: the complex argument
* % ans [complex(kind=prec)] :: the result of ,,,(c)

cache [rype(el)(PolyLogCacheSize(1),PolyLogCacheSize(2))]

The polylogarithm cache, the size is controlled using PolyLogCacheSize. The first index tracks the weight m
and the second the pair {c,, (¢)}

plcachesize [integer(PolyLogCacheSize(1))]
The number of occupied cache elements.

function naive_polylog(m, x)

A naive series implementation of the classical polylogarithm until " rolls over or the new term is less than
LiDelta

o0

)=S0

n=1
This function is not meant to be called directly
Parameters
* m [integer] :: the weight
* x [complex(kind=prec)] :: the argument

Return
res [complex(kind=prec)] :: the resulting ,,(x)

function bernoullinumber (n)

This returns the n-th Bernoulli number by computing all Bernoulli numbers up to the n-th recursively using the
relation

(7)o

k=0

20 Chapter 4. Fortran reference guide

https://mathworld.wolfram.com/BernoulliNumber.html

handyG, Release v0.1.5

for m > 0. Solving this for B,, results in

5 ,J’”f m_ Bi
me = \k)m—k+1

for m > 0 and By = 1. Care is taken to avoid multiple computation by using a dynamic cache.

Warning: The implementation of binom() limits this to roughly 42 when working with 32 bit integers.

Parameters
n [integer] :: the index of the Bernoulli number

Return

res [real(kind=prec)] :: the resulting B,,.

function harmonicnumber (n)

The harmonic number

for n < 40.

Parameters
n [integer] :: the index of the harmonic number

Return
res [real(kind=prec)] :: the resulting H,,
function logz_polylog(n, 2)

Computes the classical polylogarithm ,,(z) using series representation in log z < 27. The algorithm works by
using (1.4) of [2]

. * logz Z m—1 Hmfl - log(— 10g Z)

>~ * excludes the singular ¢; term at m = n— 1. In Fortran, we split this in a sum from 0, - - - , n— 2 with positive
arguments in the Zeta function. The next term m = n we do manually to not have to implement (o = —1/2 and
then we use C—m = (—1)™ " Biym—n/(1 + m — n) for the remaining terms.

Parameters
* n [integer] :: the weight
* z [complex(kind=prec)] :: the argument

Return
res [complex(kind=prec)] :: the resulting ,,(x)
function Li2(x)
The real dilogarithm using Chebyshev interpolation and the Clenshaw algorithm as done in CERNLib €332

Parameters
x [real(kind=prec)] :: the argument x < 1

Return
res [real(kind=prec)] :: the result o(x) € R

4.2. Internal functions 21

handyG, Release v0.1.5

function dilog(x)
An optimised evaluation for (z) for |z| < 1 using either Li2(), logz_polylog(), or naive_polylog()

Parameters
z [complex(kind=prec)] :: the argument

Return
res [complex(kind=prec)] :: the resulting o(x)

function Li3(x)
The real trilogarithm using Chebyshev interpolation and the Clenshaw algorithm as done in CERNLib C332

Parameters
x [real(kind=prec)] :: the argument x < 1

Return
res [real(kind=prec)] :: the result 3(x) € R

function trilog(x)
An optimised evaluation for 3(z) for |z| < 1 using either Li3(), logz_polylog(), or naive_polylog()

Parameters
z [complex(kind=prec)] :: the argument

Return
res [complex(kind=prec)] :: the resulting 3(x)

function BERNOULLI_POLYNOMIAL (7, x)

Calculate the n-th Bernoulli polynomial up to n = 15 using hard-coded coefficients
Parameters
* n [integer] :: the weightn < 15
* X [complex(kind=prec)] :: the argument

Return
res [complex(kind=prec)] :: the resulting B,, ()
function mylog(x)

Calculates the logarithm of a complex number x taking care to have the correct imaginary part for small but
non-zero 3.

Parameters
X [complex(kind=prec)]

Return
res [complex(kind=prec)] :: the result log(z)

function polylog(m, x)

Calculates and cache the polylogarithm of x by recursively mapping x into a region where the result can be easily
obtained. For x = +1, we use the function and for for x = 48, we use the function. For |2| > 1 we remap to
z — 1/x and for § < |z| < 2 we use logz_polylog().

Parameters
* m [integer] :: the weight
* x [complex(kind=prec)] :: the argument

Return
res [complex(kind=prec)] :: the result ,,(x)

22 Chapter 4. Fortran reference guide

handyG, Release v0.1.5

function polylog(m, x, y)
Calculates ,,, (z/y) for two inum

Parameters
* m [integer] :: the weight
* X [type(inum)] :: the numerator
* y [type(inum)] :: the denominator

Return
res [complex(kind=prec)] :: the result ., (x/y)

function plogl(a, b)
Calculates log(1 — a/b) for two inum

Parameters
* a [type(inum)] :: the numerator
* b [type(inum)] :: the denominator

Return
res [complex(kind=prec)] :: the result log(1 — a/b)

subroutine clearcache()
Clears the polylogarithm cache

4.2.6 Convergent multiple polylogarithms

underflowalert [real(kind=prec),parameter=1e-250]

A value to detect floating precision underflow in MPL ().

overflowalert [real(kind=prec),parameter=1e+250]
A value to detect floating precision overflow in MPL ().

cachesize [integer(2),parameter=(/4,2500/)]
The maximum weight and number of MPLs to cache

type el

The data type used for the MPL cache containing the complex arguments and the result. The weight is addressed
using the index in cache

Type fields
* % c (cachesize(1) [complex(kind=prec)] :: the complex argument
e % ans [complex(kind=prec)] :: the result of the MPL

cache [rype(el)(cachesize(1),cachesize(2))]

The MPL cache, the size is controlled using cachesize. The first index number of arguemnts and the index in
the cache

function MPL_converges(m, x)

Checks whether an MPL of weight m with arguments x converges
Parameters
* m (¥) [integer,in] :: the weight vector

* X (*) [complex(kind=prec),in] :: the argument vector

4.2. Internal functions 23

handyG, Release v0.1.5

Return
converges [logical] :: .true. if the MPL converges without transformation, . false. other-
wise.

function check_cache(m, x, res)
Performs a lookup in the MPL cache ().

Parameters
* m (¥) [integer,in] :: the weight vector
* X (*) [complex(kind=prec),in] :: the argument vector
Return
* res [complex(kind=prec)] :: the result of the MPL if it is in the cache
 cached [logical] :: .true. is in the cache, . false. otherwise.

function MPL (m, x)
Calculates a multiple polylogarithm using the series expansion (2.4)

oo

i1 k
(&1, k) = 1o Tk
mi,...,Mp 1yeey k) — 1 i'mkﬂ

i
R k

The expansion aborts if either x; < underflowalert, i"* < overflowflowalert or the difference between
successive terms becomes smaller than MPLdelta.

Parameters
* m (*) [integer] :: the weight vector
* X (*) [complex(kind=prec)] :: the argument vector

Return
res [complex(kind=prec)] :: the resulting MPL

4.2.7 Generalised polylogarithms

function GPL_zero_zi(l,y)
computes the value of a GPL when all z; = 0 using (2.2)

Parameters
* 1 /integer] :: the number of zeros
* y [type(inum)] :: the argument

Return
res [complex(kind=prec)] :: the resulting GPL

function is_convergent(z, y)
checks whether a given flat GPL has a convergent series representation using (2.7)

Parameters
* z (*) [type(inum)] :: the weight vector
* y [type(inum)] :: the argument

Return
is_convergent [logical] :: .true. if the GPL is convergent, . false. otherwise

24 Chapter 4. Fortran reference guide

handyG, Release v0.1.5

function remove_sr_from_last_place_in_PI(a, y2, m, p, srs)

Similar to remove_sr_from_last_place_in_G(), this uses the shuffle algebra to remove the smallest element
s, from the last position of the GPL

Parameters
* a (*) [type(inum)] :: the weights up to s, without trailing zeroes
* y2 [type(inum)] :: the argument of the inner GPL
* m [integer] :: the number of weights

-,

o p () [type(inum)] :: the p = (y',b) of (3.5) where the 3’ is the upper limit of the final
integration and b the weight vector of the pending integral

* srs [integer(1)] :: the prescription of the original s,

Return
res [complex(kind=prec)] :: the result of the reduction

function pending_integral (p, i, g, srs)

evaluates a pending integral (3.5) by reducing it to simpler ones and pure GPLs

Y 51 Sr—1
p = /agvia_': C_iv)E/ il / 52 / 5
(p (v',b),i,5=(d,y) o 51— Sy s—bs)y s —br

G(ala vy A1, Sy Qg 1y vy A ;y) .

See Section Evaluation of pending integrals for further details

Parameters

-

o p (*) [type(inum)] :: the p = (y',b) of (3.5) where the y' is the upper limit of the final
integration and b the weight vector of the pending integral

* i/integer] :: the position of the smallest element s,. that was removed in the original weight
vector

o g (*) [type(inum)] :: the § = (d,y) of (3.5) where the @ are the weights of the original GPL
(with the smallest element removed) and y is its argument.

o srs [integer(1)] :: the prescription of the original s,

Return
res [complex(kind=prec)] :: the result of the reduction

function remove_sr_from last_place_in_G(q, y2, m, sr)

This uses the shuffle algebra to remove the smallest element s, from the last position of the GPL
G(ala"'7a’m—1737'70707"'7O;y)

Parameters
* a (*) [type(inum)] :: the weights up to s,
* y2 [type(inum)] :: the argument of the GPL
* m [integer] :: the number of weights
* sr [type(inum)] :: the smallest non-zero element

Return
res [complex(kind=prec)] :: the result of the reduction

4.2. Internal functions 25

handyG, Release v0.1.5

function make_convergent (a, y2)

This reduces a given GPL to more convergent or simpler objects by using the algorithm in Section 7he algorithm
Parameters
e a (*) [type(inum)] :: the weight vector
* y2 [type(inum)] :: the argument

Return
res [complex(kind=prec)] :: the result of the reduction

function improve_convergence(z)

improves the convergence by applying the convolution to G(z1, ..., 2; 1)

Warning: In the Hoelder expression, all the (1 — z) are —*. GiNaC does something different (and confus-
ing). As we do, they usually would set 10 to -z%i®. However, if 3z = 0 and $z > 1, they just set it to +10,
be damned what it was before.

Parameters
z (*) [type(inum)] :: the normalised weights vector

Return
res [complex(kind=prec)] :: the result of the reduction

4.3 Cache system

handyG has a cache systems for classical polylogarithms and one for GPLs. It is controlled through the parameter

[integer, parameter :: PolyLogCacheSize(2) = (/ n, mmax /)]

This caches n polylogarithms of the form ,,, (z) for 2 < m < mp, each. The default values are n = 100 and npax = 5.
This cache system consumes

n X Mpmax X (2 x sizeof(complex(kind=prec)) + lbyte + padding) = 12kB

bytes of memory in the default settings. This is a very small price to pay for improving the evaluation speed considerably.

26 Chapter 4. Fortran reference guide

https://www.ginac.de/ginac.git/?p=ginac.git;a=blob;f=ginac/inifcns_nstdsums.cpp;hb=b16d5b34f40c9dcd6bd4f9e1fdeeb65cb1612db3#l1035

CHAPTER
FIVE

Here

KNOWN ISSUES

we make a list of known issues that have occurred. If you experience a problem with handyG, please do not

hesitate to contact us. Ideally, your bug report should contain

5.1

The version of handyG you are using. This can be found at the end of the ./configure procedure. Please
understand that older releases or development versions are not fully supported and that you may be required to
update the latest version.

The logfile produced by the . /configure process. This can be obtained by prepending the . /configure call
with for example LOGFILE=1o0g. txt.

If applicable, a short example program demonstrating your problem. For a timely response, please provide the
simplest program that still causes your issue.

Your issue may result in a new release or an addition on this page. By default, we will acknowledge you for your
bug report and maybe publish parts of your example code. Please let us know if you object to this.

If you already have investigated your issue, please share your results, though this is not necessary.

Segmentation fault for arguments on the complex unit circle

Thanks to F. Buccioni for reporting this issue

Sometimes GPLs with arguments on the unit circle, i.e. G(z1,...,2m ;y) withy € {c € C : |¢| = 1} result in
segmentation faults.

! compile with gfortran -o demo demo.f90 libhandyg.a
program handyGdemo

use handyG

implicit none

real (kind=prec) :: z

complex(kind=prec) :: y

complex(kind=prec), parameter :: i_ = (0._prec, 1._prec)

z
y

0.99592549661823904_prec
= (l._prec - 2%z + i_*sqrt(4*z-1._prec))/(2*z)

print*, G([(-1._prec,0._prec),(-1._prec,0._prec)],y)

end program handyGdemo

The above code may result in a segmentation fault due to an infinite loop. GPLs with complex arguments are first
normalised. In the above case, the GPL evaluate is G(—1/y, —1/y ;1). Due a numerical issue in Fortran abs(-1/

27

handyG, Release v0.1.5

y) may evaluate to a number slightly less than one. This problem can easily be circumvented by performing the
normalisation analytically

moy = cmplx(l._prec-1/(2*z), sqrt(4*z-1._prec) / (2*z), kind=prec)
print*, G([moy, moy], (l._prec,0.))

5.2 GPLs with arguments close to one are not precise

Thanks to Xiofeng Xu for pointing out this issue

The function that calculates ,,(z) for z € C is not precise for z ~ 1 because the series expansion converges too slow.
This should be resolve in v0.1.4.

5.3 Parallel builds are not supported

Thanks to R. K. Eillis and J. Campbell for pointing out this issue

make -j fails because dependencies are not correctly implemented. This should be resolved on master and will be
partof v0.1.5.

28 Chapter 5. Known Issues

CHAPTER
SIX

BIBLIOGRAPHY

29

handyG, Release v0.1.5

30

Chapter 6. Bibliography

BIBLIOGRAPHY

[1] Jonathan M. Borwein, David M. Bradley, David J. Broadhurst, and Petr Lisonek. Special values of multiple polylog-
arithms. Trans. Am. Math. Soc., 353:907-941, 2001. arXiv:math/9910045, doi:10.1090/S0002-9947-00-02616-7.

[2] R. Crandall. Note on fast polylogarithm computation. 01 2006. URL: https://www.reed.edu/physics/faculty/
crandall/papers/Polylog.pdf.

[3] Claude Duhr. Mathematical aspects of scattering amplitudes. In Theoretical Advanced Study Institute in Ele-
mentary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders, 419-476. 2015.
arXiv:1411.7538, doi:10.1142/9789814678766_0010.

[4] Claude Duhr and Falko Dulat. PolyLogTools — polylogs for the masses. JHEP, 08:135, 2019. arXiv:1904.07279,
doi:10.1007/JHEP08(2019)135.

[5] Hjalte Frellesvig, Damiano Tommasini, and Christopher Wever. On the reduction of generalized polylogarithms
to $\text Li_n$ and $\text Li_2,2$ and on the evaluation thereof. JHEP, 03:189, 2016. arXiv:1601.02649,
doi:10.1007/JHEP03(2016)189.

[6] L. Naterop, A. Signer, and Y. Ulrich. handyG —Rapid numerical evaluation of generalised polylogarithms in
Fortran. Comput. Phys. Commun., 253:107165, 2020. arXiv:1909.01656, doi:10.1016/j.cpc.2020.107165.

[7] Jens Vollinga and Stefan Weinzierl. Numerical evaluation of multiple polylogarithms. Comput. Phys. Commun.,
167:177, 2005. arXiv:hep-ph/0410259, doi:10.1016/j.cpc.2004.12.009.

31

https://arxiv.org/abs/math/9910045
https://doi.org/10.1090/S0002-9947-00-02616-7
https://www.reed.edu/physics/faculty/crandall/papers/Polylog.pdf
https://www.reed.edu/physics/faculty/crandall/papers/Polylog.pdf
https://arxiv.org/abs/1411.7538
https://doi.org/10.1142/9789814678766_0010
https://arxiv.org/abs/1904.07279
https://doi.org/10.1007/JHEP08(2019)135
https://arxiv.org/abs/1601.02649
https://doi.org/10.1007/JHEP03(2016)189
https://arxiv.org/abs/1909.01656
https://doi.org/10.1016/j.cpc.2020.107165
https://arxiv.org/abs/hep-ph/0410259
https://doi.org/10.1016/j.cpc.2004.12.009

handyG, Release v0.1.5

32

Bibliography

A

abs Q) (fortran function), 17
aimag() (fortran function), 17
append_to_each_row() (fortran function), 19

B

BERNOULLI_POLYNOMIAL Q) (fortran function), 22
bernoullinumber () (fortran function), 20
binom() (fortran function), 18

C

cache (fortran variable), 20, 23
cachesize (fortran variable), 23
check_cache() (fortran function), 24
clearcache() (fortran subroutine), 16, 23

D

di® (fortran variable), 15
dilog(Q) (fortran function), 21
DirichletBeta (fortran variable), 20

E

el (fortran type), 20, 23

F

factorial Q) (fortran function), 18

find_amount_trailing_zeros() (fortran function),
18

find_first_zero() (fortran function), 18

find_marker () (fortran function), 18

G

GQ) (fortran function), 15, 16
get_condensed_m() (fortran function), 17
get_condensed_z () (fortran function), 17
get_flattened_z () (fortran function), 17
GPL_zero_zi () (fortran function), 24
GPLopts() (fortran subroutine), 15

H

harmonicnumber () (fortran function), 21

INDEX

HoelderCircle (fortran variable), 16

i_ (fortran variable), 16
improve_convergence () (fortran function), 26
integer (fortran type), 16

inum (fortran type), 15

is_convergent () (fortran function), 24

izero (fortran variable), 17

L

Li2 Q) (fortran function), 21

Li3Q (fortran function), 22

Lidelta (fortran variable), 16
logz_polylog(Q) (fortran function), 21

M

make_convergent () (fortran function), 25
marker (fortran variable), 17
min_index () (fortran function), 18

MPLQ) (fortran function), 24
MPL_converges() (fortran function), 23
MPLdelta (fortran variable), 16

mylog(Q) (fortran function), 22

N

naive_polylog(Q) (fortran function), 20

O

overflowalert (fortran variable), 23

P

pending_integral () (fortran function), 25
plcachesize (fortran variable), 20
ploglQ (fortran function), 23

polylog(Q) (fortran function), 22
PolyLogCacheSize (fortran variable), 16

R

real (fortran type), 15
real () (fortran function), 17

33

handyG, Release v0.1.5

remove_sr_from_last_place_in_G(Q) (fortran func-
tion), 25

remove_sr_from_last_place_in_PI(Q) (fortran func-
tion), 24

S

shuffle_product () (fortran function), 19
shuffle_with_zero() (fortran function), 19
stack_matrices_vertically() (fortran function), 19

T

toinum() (fortran function), 15
trilog(Q) (fortran function), 22

U

underflowalert (fortran variable), 23

\Y

verb (fortran variable), 16

Z

zero (fortran variable), 16
zeroes () (fortran function), 18
zeta (fortran variable), 20

34

Index

	Getting started
	Obtaining the code
	Installation using meson and ninja (recommended)
	Installing using make
	Usage in Fortran
	Usage in Mathematica

	Notation
	Multiple polylogarithms
	Convergence properties
	Shuffle algebra and trailing zeros

	The algorithm
	Removal of trailing zeros
	Making GPLs convergent
	Reduction to pending integrals

	Evaluation of pending integrals
	Increase rate of convergence
	An example reduction

	Fortran reference guide
	User-facing functions
	Internal functions
	Globals
	 prescription
	Utilities
	Shuffle algebra
	Mathematical tools
	Convergent multiple polylogarithms
	Generalised polylogarithms

	Cache system

	Known Issues
	Segmentation fault for arguments on the complex unit circle
	GPLs with arguments close to one are not precise
	Parallel builds are not supported

	Bibliography
	Bibliography
	Index

