

    
      
          
            
  
Welcome to handyG’s documentation!

Generalised polylogarithms naturally appear in higher-order calculations of quantum field theories.
We present handyG [6], a Fortran 90 library for the evaluation of such functions, by implementing the algorithm proposed by Vollinga and Weinzierl.
This allows fast numerical evaluation of generalised polylogarithms with currently relevant weights, suitable for Monte Carlo integration.
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Getting started

We provide a pre-compiled Mathematica interface for most Linux systems, both for double precision [https://gitlab.com/mule-tools/handyG/-/jobs/artifacts/master/raw/handyG-double?job=compile-double] and the quad precision [https://gitlab.com/mule-tools/handyG/-/jobs/artifacts/master/raw/handyG-quad?job=compile-quad].
Once downloaded, just make the file executable through

# for double precision
$ chmod +x handyG-double
# for quad precision
$ chmod +x handyG-quad





and load it into Mathematica

(* for double precision *)
Install["handyG-double"]
(* for quad precision *)
Install["handyG-quad"]






Obtaining the code

The code can be downloaded from this page in compressed form or cloned using the git command

$ git clone https://gitlab.com/mule-tools/handyG.git





This will download handyG into a subfolder called handyg.
Within this folder

$ git pull





can be used to update handyG.



Installation using meson and ninja (recommended)

handyG can most easily be build with meson [https://mesonbuild.com/] and ninja [https://ninja-build.org/].
You can install these through your system’s package manager or pip if you have not already

$ pip install meson ninja





Once you have these tools, you can run

$ meson setup build        # Configures handyG
$ ninja -C build           # Compiles the library
$ ninja -C build test      # Performs checks (optional)
$ ninja -C build install   # Installs library into prefix (optional)





This will compile handyG in the subfolder build (you can choose any name).

During the configuration step (meson setup) you can provide a number of options



	install handyG to a non-standard path (recommended)


$ meson setup build --prefix /path/to/installation/folder










	perform dynamic linking (produces libhandyg.so rather than libhandyg.a)


$ meson setup build --default-library shared










	Use quadruple precision (128 bits) rather than double precision (64 bits)


$ meson setup build -Dreal=128










	Compile Mathematica interface (requires mathematica to be installed or mocked)


$ meson setup build -Dmcc=true










	Compile GiNaC interface (testing only, requires GiNaC to be installed)


$ meson setup build -Dginac=true










	Build handyG with debug symbols (testing and debugging only)


$ meson setup build --buildtype=debug















You can of course mix and match these options.
For further details, see the meson manual [https://mesonbuild.com/Commands.html#setup]



Installing using make

The code follows the conventional installation scheme

./configure  # Look for compilers and make a guess at
             # necessary flags
make all     # Compiles the library
make check   # Performs a variety of checks (optional)
make install # Installs library into prefix (optional)





handyG has a Mathematica interface (activate with --with-mcc) and a GiNaC interface (activate with --with-ginac) that can be activated by supplying the necessary flags to ./configure.
The latter is only used for testing purposes and is not actually required for running.
Another important flag is --quad which enables quadruple precision in Fortran.
Note that this will slow down handyG, so that it should only be used if double-precision is indeed not enough.

The compilation process creates the following results



	libhandyg.a  the handyG library


	handyg.mod   the module files for Fortran 90


	geval        a binary file for quick-and-dirty evaluation


	handyG       the Mathematica interface









Usage in Fortran

handyG is written with Fortran in mind.
We provide a module handyg.mod containing the following objects


	
	prec
	the working precision as a Fortran kind.
This is read-only, the code needs to be reconfigured for a change to take effect.
Note that this does not necessarily increase the result’s precision without also changing the next options.







	inum


a datatype to handle \(\io^\pm\)-prescription (see Section 3.4).






	clearcache


handyG caches a certain number of classical polylogarithms (see Section 3.5).
This resets the cache (in a Monte Carlo this should be called at every phase space point).






	G


the main interface for generalised polylogarithms.








The following code calculates five GPLs (see paper for details)

PROGRAM gtest
  use handyG
  complex(kind=prec) :: res(5), x, weights(4)
  call clearcache

  x = 0.3 ! the parameter

  ! flat form with integers
  res(1) = G((/ 1, 2, 1 /))

  ! very flat form for real numbers using F2003 arrays
  res(2) = G([ 1., 0., 0.5, real(x)])
  ! this is equivalent to the flat expression
  res(2) = G([ 1., 0., 0.5 ], real(x))
  ! or in condesed form
  res(2) = G((/1, 2/), (/ 1., 0.5 /), real(x))

  ! flat form with complex arguments
  weights = [(1.,0.), (0.,0.), (0.5,0.), (!.,1.) ]
  res(3) = G(weights, x)

  ! flat form with explicit i0-prescription
  res(4) = G([inum(1.,+1),inum(0,+1),inum(5,+1)], &
                    inum(1/x,di0))
  res(5) = G([inum(1.,-1),inum(0,+1),inum(5,+1)],&
                    inum(1/x,di0))
  ! this is equivalent to
  res(5) = G((/1,2/),[inum(1.,-1),inum(5,+1)], &
                    inum(1/x,+1))

  do i =1,5
    write(*,900) i, real(res(i)), aimag(res(i))
  enddo
900 FORMAT("res(",I1,") = ",F9.6,"+",F9.6,"i")
END PROGRAM gtest





The easiest way to compile code is with pkg-config.
Assuming handyG has been installed with make install, the example program example.f90 can be compiled as (assuming you are using GFortran)

$ gfortran -o example example.f90 \
       `pkg-config --cflags --libs handyg`
$ ./example
res(1) = -0.822467+ 0.000000i
res(2) =  0.128388+ 0.000000i
res(3) = -0.003748+ 0.003980i
res(4) = -0.961279+-0.662888i
res(5) = -0.961279+ 0.662888i





If pkg-config is not avaible and/or for non-standard installations it might be necessary to specify the search paths

$ gfortran -o example example.f90 \
>     -I/absolute/path/to/handyg -fdefault-real-8 \
>     -L/absolute/path/to/handyg -lhandyg







Usage in Mathematica

We have interfaced our code to Mathematica using Wolfram’s MathLink interface.
Below we show how to calculate the functions above in Mathematica, again, assuming that the code was installed with make install

Install["handyg"];
x=0.3;
res[1] = G[1,2,1]
res[2] = G[1,0,1/2,x]
res[3] = G[1,0,1/2,1+I,x]
res[4] = G[SubPlus[1],5,1/x]
res[5] = G[SubMinus[1],5,1/x]





Using SubPlus and SubMinus the side of the branch cut can be specified.
In Mathematica, this can be entered using ctrl _ followed by + or -.
When using handyG in Mathematica, keep in mind that it uses Fortran which means that computations are performed with fixed precision.





            

          

      

      

    

  

    
      
          
            
  
Notation

GPLs are complex-valued functions that depend on \(m\) complex parameters \(z_1,...,z_m\) as well as an argument \(y\).
We can define a GPL as a nested integral with \(z_m\neq 0\)


(1)\[  G(z_1,...,z_m\ ;y) \equiv
     \int_0^y         \frac{\D t_1}{t_1-z_1}
     \int_0^{t_1    } \frac{\D t_2}{t_2-z_2}
     \cdots
     \int_0^{t_{m-1}} \frac{\D t_m}{t_m-z_m}\,.\]

Alternatively, they can also be defined in recursive form as


\[G(z_1,...,z_m\ ;y)=\int_0^y \frac{\D t_1}{t_1-z_1}
G(z_2,...,z_m\ ;t_1)\,,\]

where the base case of \(m=1\) is just a logarithm


\[G(z\ ;y)= \log\Big(1-\frac{y}{z}\Big)\,.\]

To also cover the case of \(z_m=0\) we define


(2)\[  G(\underbrace{0,...,0}_{m}\ ;y)\equiv G(0_m\ ; y)
   =\frac{(\log y)^m}{m!}\,,\]

where we denote a string of \(m\) zeros as \(0_m\).

We call \(G(z_1,...,z_m;y)\) flat since all parameters are explicit.
However, this notation can be cumbersome if many of the \(z_i\) are zero.
In this case we introduce the condensed notation which uses partial weights \(m_i\) in order to keep track of the number of zeros in front of the parameter \(z_i\)


(3)\[ G_{m_1,...,m_k}\big(z_1,...,z_k\ ;y\big) \equiv G\big(
   0_{m_1-1},
   z_1,...,z_{k-1},
   0_{m_k-1},z_k\ ;y\big)\,.\]

Both notations will be used interchangeably. We say that this GPL is of depth \(k\) as it has \(k\) non-zero parameters (not counting \(y\)).
Its total weight is \(m=\sum m_i\).


Multiple polylogarithms

Multiple polylogarithms (MPLs) are a related class of functions that also generalise logarithms.
They are defined as an infinite nested series


(4)\[ \Li_{m_1,...,m_k}(x_1,...,x_k) \equiv
   \sum_{i_1 > \cdots > i_k}^\infty
      \frac{x_1^{i_1}}{i_1^{m_1}} \cdots
      \frac{x_k^{i_k}}{i_k^{m_k}}\,,\]

where \(m_1,...,m_k\) are integer weights.
If there is only one argument present, they reduce to classical polylogarithms \(\Li_m(x)\).

MPLs are closely related to GPLs through


\[\Li_{m_1,...,m_k}(x_1,...,x_k) =
  (-1)^k G_{m_1,...,m_k} \Big(
      \frac1{x_1} , \frac1{x_1 x_2} ,...,
      \frac1{x_1 \cdots x_k}\ ;1 \Big)\,.\]

This can be inverted by performing an iterated substitution


\[u_1 = \frac1{x_1}\,,\quad
u_2 = \frac1{x_1 x_2} = \frac{u_1}{x_1}\,,
\quad...\qquad
u_k = \frac1{x_1 ... x_k} = \frac{u_{k-1}}{x_k}\,,\]

allowing us to write the GPLs in terms of MPLs


(5)\[  G_{m_1,...,m_k}(u_1,...,u_k\ ;1)
      = (-1)^k \Li_{m_1,...,m_k} \Big(
            \frac1{u_1},\frac{u_1}{u_2} , ... ,
                \frac{u_{k-1}}{u_k} \Big)\,.\]

In (5), the left-hand side is an integral representation whereas the right-hand side is a series representation.

GPLs with arbitrary parameters satisfy the scaling relation


(6)\[  G(z_1,...,z_m\ ;y) = G(\kappa z_1,...,\kappa z_m\ ;\kappa y)\]

for any complex number \(\kappa \ne 0\).
(5) assumes the argument of \(G\) is equal to one.
Using the scaling relation we can normalise \(G(z_1,...,z_m;y)\) with \(\kappa=1/y\) to guarantee that the argument is indeed one.

For the numerical evaluation the main idea will be to compute \(G\)-functions by reducing them to their corresponding series representation (5).



Convergence properties

If we want to use an infinite series for numerical evaluation of GPLs, the series needs to be convergent.
It can be shown [7] that an MPL \(\Li_{m_1,...,m_k}(x_1,...,x_k)\) is convergent if the conditions


\[|x_1 \cdots x_k| < 1 \qquad \text{and} \qquad (m_1,x_1) \ne (1,1)\]

are satisfied.
Using the relation (5), this translates to a sufficient convergence criterion for the integral representation.
We find that if


(7)\[|y| < |z_i|\quad \forall i=1,...,k\quad \text{and} \quad (m_1,y/z_1) \ne (1,1)\,,\]

\(G_{m_1,...,m_k}(z_1,...,z_k\ ;y)\) is convergent.

In Section The algorithm we will review the algorithm developed by [7] to transform any GPL into this form.



Shuffle algebra and trailing zeros

If the last parameter \(z_k\) of a GPL \(G_{m_1,...,m_k}(z_1,...,z_k\ ;y)\) vanishes, the convergence criterion (7) is not fulfilled.
Hence, any algorithm that intents to exploit (4) for numerical evaluation needs to remove trailing zeros.

We can exploit the fact that GPLs satisfy two Hopf algebras:
a shuffle algebra and a stuffle algebra [3, 5, 7].
Here, we will only be needing the former.
It allows us to write the product of two GPLs with parameters \(\vec a\) and \(\vec b\) as


(8)\[G(\vec a\ ;y) \cdot G(\vec b\ ;y)
  = \sum_{\vec c = \vec a\,\shuffle\,\vec b}
      G(\vec c\ ;y)\,.\]

The sum in the right-hand side of (8) runs over all elements of the shuffle product of the list \(\vec a\) with \(\vec b\).
This shuffle product gives the set of all permutations of the elements in \(\vec a\) and \(\vec b\) that preserve the respective orderings of \(\vec a\) and \(\vec b\).
For practical implementations, a recursive algorithm exists [4].





            

          

      

      

    

  

    
      
          
            
  
The algorithm

The central idea to numerically evaluate GPLs is to first map their parameters to the domain where the corresponding series representation is convergent (7) and to then use the series expansion up to some finite order.
Thus, we will first look at how to remove trailing zeros in Section Removal of trailing zeros, and then how to make a GPL without trailing zeros convergent in Section Making GPLs convergent as presented in [7].
In Section Increase rate of convergence, we comment on accelerating the convergence of already convergent GPLs.
Finally, in Section An example reduction we apply the algorithm to an explicit example.


Removal of trailing zeros

Consider a GPL of weight \(m\) with \(m\!-\!j\) trailing zeros


\[G(z_1,...,z_j,0_{m-j}\ ;y)\,.\]

We now shuffle \(\vec a = (z_1,...,z_j,0_{m-j-1})\) with \(\vec b = (0)\).
This results in \(m\!-\!j\) times the original GPL as well as terms with less trailing zeros


(9)\[\begin{split}     G(0\ ;y)\cdot G(z_1,...,z_j,0_{m-j-1}\ ;y)
        &= (m-j) G(z_1,...,z_j,0_{m-j}\ ;y)  \\&\qquad
           + \sum_{\vec s} G(s_1,...,s_j,z_j,0_{m-j-1}\ ;y)\,,\end{split}\]

where the sum runs over all shuffle \(\vec s=(z_1,...,z_{j-1})\, \shuffle\, (0)\).
We now solve (9) for \(G(z_1,...,z_j,0_{m-j};y)\) and obtain an expression with fewer trailing zeros.
By applying this strategy recursively, we can remove all trailing zeros.



Making GPLs convergent


Reduction to pending integrals

Consider a GPL of the form


(10)\[     G(a_1,...,a_{i-1},s_r,a_{i+1},...,a_m\ ;y)\]

where \(s_r(=a_i)\) has the smallest absolute value among all the non-zero parameters in \(G\).
If \(|s_r| < |y|\), (10) has no convergent series expansion.
In order to remove the smallest weight \(s_r\), we apply the fundamental theorem of calculus to generate terms where \(s_r\) is either integrated over or not present anymore


\[\begin{split} G(a_1,...,a_{i-1},s_r,a_{i+1},...,a_m\ ;y) =
 G(a_1,...,a_{i-1}, 0 ,a_{i+1},...,a_m\ ;y)   \\
+  \int_0^{s_r} \D s_{r+1} \frac{\partial}{\partial s_{r+1}}
 G(a_1,...,a_{i-1},s_{r+1},a_{i+1},...,a_m\ ;y)\,.\end{split}\]

For the second term we use partial fraction decomposition and integration by parts.
Then we obtain different results depending on where \(s_r\) is in the parameter list:



	If \(s_r\) appears first in the list (i.e. \(i = 1\) and \(s_r=a_1\)) we find



(11)\[\begin{split}     G(s_r,a_{i+1},...,a_m\ ;y) =
     G(0  ,a_{i+1},...,a_m\ ;y) +
       \underbrace{\int_0^{s_r}\frac{\D s_{r+1}}{s_{r+1}-y     }}_{G(y\ ;s_r)} G(a_{i+1},...,a_m\ ;y) \\
     + \underbrace{\int_0^{s_r}\frac{\D s_{r+1}}{s_{r+1}-a_{i+1}} G(s_{r+1},a_{i+2},..,a_m\ ;y)}_{\text{pending integral}}
     - \underbrace{\int_0^{s_r}\frac{\D s_{r+1}}{s_{r+1}-a_{i+1}}}_{G(a_2\ ;s_r)} G(a_{i+1},...,a_m\ ;y)
   \,.\end{split}\]

In the first term on the right-hand side, \(s_r\) is absent.
Therefore the resulting GPL is simpler.
It might still be non-convergent, but we can use this method recursively on the resulting GPLs until we end up with convergent GPLs.

In the second and fourth terms the integration variable \(s_{r+1}\) does not appear in the parameters of the GPL, so that the integral can be solved (we write the solution as a GPL instead of a logarithm to be able to continue recursively).

The third term does have the integration variable \(s_{r+1}\) among the weights and therefore yields what we refer to as a pending integral.
This object can be written as a linear combination of simpler GPLs as we will see in Section Evaluation of pending integrals.

Note that all GPLs on the right-hand side have depth reduced by one.






	If \(s_r\) appears in the middle of the list, i.e. \(1 < i < m\), we find



(12)\[\begin{split}       G(a_1,...,a_{i-1},s_r, a_{i+1},...,a_m\ ;y) =  & \\
     + G(a_1,...,a_{i-1}, 0 ,&a_{i+1},...,a_m\ ;y)      \\
     -             \int_0^{s_r}  \frac{\D s_{r+1}}{s_{r+1}-a_{i-1}}                     & G(a_1,...,a_{i-2},s_{r+1},a_{i+1},...,a_m\ ;y) \\
     + \underbrace{\int_0^{s_r}  \frac{\D s_{r+1}}{s_{r+1}-a_{i-1}}}_{G(a_{i-1}\ ;s_r)} & G(a_1,...,a_{i-1},        a_{i+1},...,a_m\ ;y) \\
     +             \int_0^{s_r}  \frac{\D s_{r+1}}{s_{r+1}-a_{i+1}}                     & G(a_1,...,a_{i-1},s_{r+1},a_{i+2},...,a_m\ ;y) \\
     - \underbrace{\int_0^{s_r}  \frac{\D s_{r+1}}{s_{r+1}-a_{i+1}}}_{G(a_{i+1}\ ;s_r)} & G(a_1,...,a_{i-1},        a_{i+1},...,a_m\ ;y)
   \,.\end{split}\]

Again we obtain simpler GPLs (without \(s_r\) or lower depth) as well as pending integrals.






	If \(s_r\) appears last in the list, i.e. \(i = m\), we use the shuffle algebra to remove \(s_r\) from the last place, just as we have done to remove trailing zeros.







We repeat these steps also for GPLs that are already under a pending integral.




Evaluation of pending integrals

The most general term created by the procedure of the last section is of the form


(13)\[\begin{split}      \PI\Big(\vec p=(y',\vec b),i,\vec g = (\vec a,y)\Big)
      &\equiv
          \int_0^{y'     } \frac{\D s_1}{s_1-b_1}
          \int_0^{s_1    } \frac{\D s_2}{s_2-b_2} \cdots
          \int_0^{s_{r-1}} \frac{\D s_r}{s_r-b_r}
          \\&\qquad
                G(a_1,...,a_{i-1},s_r,a_{i+1},...,a_m\ ;y) \, .\end{split}\]

Here we have adopted the convention that \(i=0\) implies that the integration variable does not appear inside the GPL.
For example


\[\begin{split}\PI\Big(\vec p=(1,2,3),0,(4,5)\Big)&= \int_0^1 \frac{\D s_1}{s_1-2}\int_0^{s_1}\frac{\D s_2}{s_2-3} G(4;5) \, \\
\PI\Big(\vec p=(1,2,3),2,(4,5)\Big)&= \int_0^1 \frac{\D s_1}{s_1-2}\int_0^{s_1}\frac{\D s_2}{s_2-3} G(4,s_2;5)\,.\end{split}\]

As we use the algorithm, we need a way to collapse the pending integrals back down again.
As an example, consider the case \(i=1\)


\[\begin{split}  & \PI\Big(\vec p=(y',\vec b),1,\vec g=(\vec a,y)\Big)
    =              \int_0^{y'} \frac{\D s_1}{s_1-b_1}\cdots\int_0^{s_{r-1}} \frac{\D s_r}{s_r-b_r}                     G(s_r,a_{i+1},...,a_m\ ;y) = \\
  &    \underbrace{\int_0^{y'} \frac{\D s_1}{s_1-b_1}\cdots\int_0^{s_{r-1}} \frac{\D s_r}{s_r-b_r}}_{\PI(\vec p,0,())} G( 0, a_{i+1},...,a_m\ ;y) \\
  & +  \underbrace{\int_0^{y'} \frac{\D s_1}{s_1-b_1}\cdots\int_0^{s_{r-1}} \frac{\D s_r}{s_r-b_r} \int_0^{s_r}\frac{\D s_{r+1}}{s_{r+1}-y}}_{\PI\Big((\vec p,y),0,()\Big)}  G(a_{i+1},...,a_m\ ;y) \\
  & +  \underbrace{\int_0^{y'} \frac{\D s_1}{s_1-b_1}\cdots\int_0^{s_{r-1}} \frac{\D s_r}{s_r-b_r} \int_0^{s_r}\frac{\D s_{r+1}}{s_{r+1}-a_{i+1}}  G(s_{r+1},a_{i+2},...,a_m\ ;y) }_{\PI\Big((\vec p,a_{i+1}),1,(a_{i+2},...,a_m;y)\Big)}\\
  & -  \underbrace{\int_0^{y'} \frac{\D s_1}{s_1-b_1}\cdots\int_0^{s_{r-1}} \frac{\D s_r}{s_r-b_r} \int_0^{s_r}\frac{\D s_{r+1}}{s_{r+1}-a_{i+1}}}_{\PI\Big((\vec p,a_{i+1}),0,()\Big)}  G(a_{i+1},...,a_m\ ;y)
\\&= \PI\Big(\vec p, 0, ()\Big) G(0,a_{i+1},...,a_m\ ; y)
   + \PI\Big((\vec p, y), 0, () \Big) G(a_{i+1}, ...., a_m\ ; y)\\&
   + \PI\Big((\vec p, a_{i+1}), 1, (a_{i+2}, ..., a_m\ ; y)\Big)
   - \PI\Big((\vec p, a_{i+1}), 0, ()\Big) G(a_{i+1}, ..., a_m\ ; y)\,.\end{split}\]

The other combinations follow similarly


\[\begin{split}  \PI\Big( \vec p         , i ,(\vec{a};y)                        \Big) &=
+ \PI\Big( \vec p         , 0 ,()                                 \Big) \, G(a_1,...,a_{i-1},0,a_{i+1},...,a_m\ ;y) \\&
- \PI\Big((\vec p,a_{i-1}),i-1,(a_{i+1},...,a_m; y)               \Big) \\&
+ \PI\Big((\vec p,a_{i-1}), 0 ,()                                 \Big) \, G(a_1,...,a_{i-1},  a_{i+1},...,a_m\ ;y) \\&
+ \PI\Big((\vec p,a_{i+1}), i ,(a_1,...,a_{i-1},a_{i+2},...,a_m;y)\Big) \\&
- \PI\Big((\vec p,a_{i+1}), 1 ,()                                 \Big) \, G(a_1,...,a_{i-1},  a_{i+1},...,a_m\ ;y)\,.\end{split}\]

As we recursively apply the algorithm, we increase the number of pending integrals in front but decrease the depth of the \(G\)-functions by one unit in every recursion step.
We do this until



	the only GPLs remaining under pending integrals are of depth one, i.e. \(G_m(s_r\; y)\),


	\(s_r\) is the argument, i.e. \(G(...\ ;s_r)\), or


	there are no GPLs under pending integrals.







We now discuss all these cases in turn:



	For GPLs of depth one, i.e. \(G_m(s_{r \pm}; y)\), we will be working with explicit logarithms.
Hence, we need to indicate the infinitesimal imaginary part.
We have to distinguish two cases: \(m=1\) and \(m>1\). For \(m = 1\) we have


\[G_1(s_{r \pm};y) = G_1(y_{2 \mp};s_r) - G(0;\ s_r) + \log(-y)\,.\]

Note that we will most likely have pending integrals in front, thus each term gives again a simpler pending integral


\[  \PI\Big(\vec p=(y_\pm', \vec b), 1, (y)    \Big) =
  G(\vec b, y_\mp\ ; y') - G(\vec b, 0\ ; y')
+ \log(-y_\mp) G\big(\vec b, y')\]

The first and second terms have been reduced to case 2. and the third term to case 3.

For \(m > 1\), we note


(14)\[   G_m(s_{r \pm}\ ; y) = -\zeta(m)
       + \int_0^ {y}  \frac{\D t}{t}G_{m-1}(t_{\pm}\ ; y)
       - \int_0^{s_r} \frac{\D t}{t}G_{m-1}(t_{\pm}\ ; y)\,.\]

The second and third terms are now longer pending integrals, albeit with reduced weight


\[\begin{split}          \PI\Big( \vec{p}   , m ,(0_{m-1},y)\Big) &=
- \zeta(m)\PI\Big( \vec{p}   , 0 ,(         )\Big) \\&\qquad
+         \PI\Big(( y,0     ),m-1,(0_{m-2};y)\Big)
          \PI\Big( \vec{p}   , 0 ,(         )\Big) \\&\qquad
-         \PI\Big((\vec{p},0),m-1,(0_{m-2};y)\Big)\,.\end{split}\]



	In this case we end up simply with one large GPL


\[\int_0^{y' }     \frac{\D s_1}{s_1-b_1}  \cdots
\int_0^{s_{r-1}} \frac{\D s_r}{s_r-b_r} \, G(\vec a\ ;s_r) =
G((\vec b,\vec a)\ ; y' )\,.\]

In terms of pending integrals this is written as


\[\PI\Big(\vec p=(y',\vec b), m+1, \vec g\Big) = G(\vec b, \vec g\ ; y')\,.\]



	If there is no GPL under the pending integral, the integral evaluates to a GPL


\[\int_0^{y' }     \frac{\D s_1}{s_1-b_1} \cdots
\int_0^{s_{r-1}} \frac{\D s_r}{s_r-b_r} = G(b_1,...,b_r\ ;y' )\,.\]








In each case we end up with GPLs that are simpler in the sense that \(s_r\) has been eliminated.
These might still be non-convergent due to other (non-zero) \(z_i\) elements being smaller in absolute value than \(y\).
But applying the removal of \(s_r\) recursively we can eliminate all \(z_i\) for which \(|z_i| < |y|\).
Therefore in the end we always obtain convergent GPLs.



Increase rate of convergence

Even though we have now only convergent GPLs, that does not imply that the convergence is fast enough for numerical applications.
From now on we will only consider \(y=1\), as we can normalise any convergent GPL using (6).
Convergence of such a GPL is slow if some \(z_i\) is close to the unit circle, i.e.


\[1 \le |z_i| \le \lambda < 2\,,\]

where \(\lambda\) is a parameter to be chosen.

Only for such \(z_i\) we apply the following strategy:
to increase the rate of convergence we can use the fact that GPLs satisfy the H
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Fortran reference guide

Here we will list the functions of handyG


User-facing functions


	
type  real (kind=prec) [fixed]

	The real number type used in handyG.
This cannot be changed at runtime by the user but should be used for all interactions with the code.
It usually refers to double precision






	
type  inum

	The data type used for the i0+ prescription.
This implements abs, real, and aimag.


	Type fields:

	
	% c [complex(kind=prec)] :: the complex number


	% i0 [integer(1)] :: the prescription













	
di0 [type(inum),fixed]

	The default sign of the i0+ prescription






	
subroutine  GPLopts(mpldel, lidel, hcircle)

	a subroutine to set runtime parameters of handyG


	Parameters:

	
	MPLdel [real(kind=prec),optional] :: difference between two successive terms at which the series expansion (4) is truncated. Defaults to 10-15.


	LiInf [integer,optional] :: number of terms in the expansion of classical polylogarithms. Defaults to 1000.


	hcircle [real(kind=prec),optional] :: the size of the H
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Known Issues

Here we make a list of known issues that have occurred.
If you experience a problem with handyG, please do not hesitate to contact us.
Ideally, your bug report should contain



	The version of handyG you are using.
This can be found at the end of the ./configure procedure.
Please understand that older releases or development versions are not fully supported and that you may be required to update the latest version.


	The logfile produced by the ./configure process.
This can be obtained by prepending the ./configure call with for example LOGFILE=log.txt.


	If applicable, a short example program demonstrating your problem.
For a timely response, please provide the simplest program that still causes your issue.


	Your issue may result in a new release or an addition on this page.
By default, we will acknowledge you for your bug report and maybe publish parts of your example code.
Please let us know if you object to this.


	If you already have investigated your issue, please share your results, though this is not necessary.








Segmentation fault for arguments on the complex unit circle

Thanks to F. Buccioni for reporting this issue

Sometimes GPLs with arguments on the unit circle, i.e. \(G(z_1,...,z_m\ ;y)\) with \(y \in\{c\in \mathbb{C}\ :\ |c|=1\}\) result in segmentation faults.

! compile with gfortran -o demo demo.f90 libhandyg.a
program handyGdemo
  use handyG
  implicit none
  real(kind=prec) :: z
  complex(kind=prec) :: y
  complex(kind=prec), parameter :: i_ = (0._prec, 1._prec)

  z = 0.99592549661823904_prec
  y = (1._prec - 2*z + i_*sqrt(4*z-1._prec))/(2*z)

  print*, G([(-1._prec,0._prec),(-1._prec,0._prec)],y)

end program handyGdemo





The above code may result in a segmentation fault due to an infinite loop.
GPLs with complex arguments are first normalised.
In the above case, the GPL evaluate is \(G(-1/y, -1/y\ ;1)\).
Due a numerical issue in Fortran abs(-1/y) may evaluate to a number slightly less than one.
This problem can easily be circumvented by performing the normalisation analytically

moy = cmplx(1._prec-1/(2*z), sqrt(4*z-1._prec) / (2*z), kind=prec)
print*, G([moy, moy],(1._prec,0.))







GPLs with arguments close to one are not precise

Thanks to Xiofeng Xu for pointing out this issue

The function that calculates \(\Li_n(z)\) for \(z\in\mathbb{C}\) is not precise for \(z\sim 1\) because the series expansion converges too slow.
This should be resolve in v0.1.4.



Parallel builds are not supported

Thanks to R. K. Eillis and J. Campbell for pointing out this issue

make -j fails because dependencies are not correctly implemented.
This should be resolved on master and will be part of v0.1.5.
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